Trang chủ Toán Học Lớp 7 Cho tam giác ABC vuông tại A,có AB=AC.Gọi K là...

Cho tam giác ABC vuông tại A,có AB=AC.Gọi K là trung điểm của cạnh BC. a, Chứng minh ΔAKB=ΔAKC và AK⊥BC b, Từ C kẻ đường vuông góc với BC,nó cắt AB tại E.Chứn

Câu hỏi :

Cho tam giác ABC vuông tại A,có AB=AC.Gọi K là trung điểm của cạnh BC. a, Chứng minh ΔAKB=ΔAKC và AK⊥BC b, Từ C kẻ đường vuông góc với BC,nó cắt AB tại E.Chứng minh EC//AK. c, Chứng minh CE=CB

Lời giải 1 :

a/ Xét tam giác AKB và tam giác AKC có:

AB = AC (GT)

BK = CK (GT)

AK: cạnh chung

=> tam giác AKB = tam giác AKC (c.c.c)

Ta có: tam giác AKB = tam giác AKC

=> góc AKB = góc AKC (2 góc tương ứng)

Mà góc AKB + góc AKC = 1800

=> góc AKB = góc AKC = 1800 : 2 = 900

Vậy AK vuông góc BC (đpcm)

b/ Ta có: {AKBC,ECBC}=> EC // AK (đpcm)

c/ Ta có: AC: chung (1)

Ta có: góc BAC + góc CAE = 1800

hay 900 + CAE = 1800

=> góc CAE = 900

=> góc BAC = góc CAE (2)

Trong tam giác vuông cân ABC có:

góc ABC + góc ACB = 900

Vì tam giác ABC cân nên góc ABC = góc ACB

=> góc ABC = góc ACB = 900:2 = 450

Ta có: góc ACB + góc ACE = 900 (vì góc BCE=900)

hay 450 + góc ACE = 900

=> góc ACE = 450

Vậy góc ACB = góc ACE = 450 (3)

Từ (1),(2),(3) => tam giác ACB = tam giác ACE

=> CE = CB (2 cạnh tương ứng) (đpcm)

image

Thảo luận

-- đpcm là j
-- điều phải chứng minh

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự 7

Lớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!

Nguồn : ADMIN :))

Copyright © 2021 HOCTAP247