Trang chủ Toán Học Lớp 7 Bài 4 (3,5 điểm). Cho AABC, lấy M là trung...

Bài 4 (3,5 điểm). Cho AABC, lấy M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD. Chứng minh rằng: AAMB = ADMC a) b) AC // B

Câu hỏi :

mn ơi cứu mik ,vẽ hộ mik hình nx nha

image

Lời giải 1 :

Đáp án:

 

Giải thích các bước giải:

xét 2 tam giác AMB và DMC

có AM = DM ( gt )

góc DMC = góc AMB ( 2 góc đối đỉnh )

BM = CM ( M là trung điểm của BC )

=> tam giác AMB = tam giác DMC ( c.g.c ) ( đpcm )

b, xét hai tam giác AMC và DMB

có AM = DM ( gt )

góc DMB = góc AMC ( 2 góc đối đỉnh )

BM = CM ( M là trung điểm của BC )

=> tam giác AMC = ta giác DMB ( c.g.c )

=> góc DBM = góc ACM ( 2 góc tương ứng )

mà 2 góc trên nằm ở vị trí so le trong của 2 đt AC và BD

=> AC // BD ( đpcm )

c, từ b có

tam giác AMC = tam giác DMB ( c.g.c )

=> AC = BD ( 2 cạnh tương ứng )

và góc DBM = góc ACM ( 2 góc tương ứng )

xét hai tam giác AKC và BHD

có góc BHD = góc CKA = 90 độ

AC = BD (cmt)

góc DBM = góc ACM ( cmt )

=> tam giác AKC = tam giác BHD ( cạnh huyền - govs nhọn )

=> BH = CK ( 2 cạnh tương ứng )(đpcm )

 

image

Thảo luận

-- bạn thiếu câu d nhưng cũng được câu tlhn

Lời giải 2 :

Đáp án:

Giải thích các bước giải:

a) Xét ΔAMB và ΔDMC có:

+ AM = DM

+ góc AMB = góc DMC (đối đỉnh)

+ MB = MC

=> ΔAMB = ΔDMC (c-g-c)

xét hai tam giác AMC và DMB

có AM = DM ( gt )

góc DMB = góc AMC ( 2 góc đối đỉnh )

BM = CM ( M là trung điểm của BC )

=> tam giác AMC = ta giác DMB ( c.g.c )

=> góc DBM = góc ACM ( 2 góc tương ứng )

mà 2 góc trên nằm ở vị trí so le trong của 2 đt AC và BD

=> AC // BD ( đpcm )

c) Xét ΔAHM và ΔDKM có:

+ góc AHM = góc DKM = 90 độ

+ AM = DM

+ góc AMH = góc DMK (đối đỉnh)

=> ΔAHM = ΔDKM (ch-gn)

=> HM = KM

Mà BM  = CM

=> BM +KM = CM +HM

=> BK = CH

d)

Gọi F là trung điểm của BD

Ta cm được ΔAMC = ΔDMB (c-g-c)

=> góc MAC = góc MDB và AC//BD; AC = BD

=> AI = DF

=> ΔAMI = ΔDMF (c-g-c)

=> góc AMI  = góc DMF

=> I,M,F thẳng hàng; MI = MF

Trong ΔBCE có MI là đường trugn bình

=> MI//CE và MI = 1/2CE

Tương tự ΔBCD có MF là đường trung bình

=> MF//CD và MF = 1/2CD

=> CE=CD và CE trùng với CD

=> C là trung điểm của DE

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự 7

Lớp 7 - Năm thứ hai ở cấp trung học cơ sở, một cuồng quay mới lại đến vẫn bước tiếp trên đường đời học sinh. Học tập vẫn là nhiệm vụ chính!

Nguồn : ADMIN :))

Copyright © 2021 HOCTAP247