Trang chủ Toán Học Lớp 8 Cho tam giác ABC cân tại A đường cao AM...

Cho tam giác ABC cân tại A đường cao AM . Gọi N là trung điểm AC , D là điểm đối xứng của M qua N a) Chứng minh : tứ giác ADCM là hình chữ nhật b) tính S ADCM

Câu hỏi :

Cho tam giác ABC cân tại A đường cao AM . Gọi N là trung điểm AC , D là điểm đối xứng của M qua N a) Chứng minh : tứ giác ADCM là hình chữ nhật b) tính S ADCM biết AM = 8cm , BC = 6cm (giúp mik với ạ ) mik kém hình :(

Lời giải 1 :

a. Tứ giác ADCM có: AC,MD là các đường chéo AC giao MD tại N N là trung điểm AC(gt) N là trung điểm DM(D đối xứng M qua N) =>tứ giác ADCM là hình bình hành Mà góc AMC=90 độ(AM là đường cao của tam giác ABC) =>Tứ giác ADCM là hình chữ nhật b. Tam giác ABC cân tại A có AM là đường cao =>AM đông thời là đường trung tuyến =>M là trung điểm BC =>MC=BC:2=6:2=3(cm) Vì ADCM là hình chữ nhật(cmt) =>S ADCM=AM.MC=8.3=24(cm2)

Thảo luận

Bạn có biết?

Toán học là môn khoa học nghiên cứu về các số, cấu trúc, không gian và các phép biến đổi. Nói một cách khác, người ta cho rằng đó là môn học về "hình và số". Theo quan điểm chính thống neonics, nó là môn học nghiên cứu về các cấu trúc trừu tượng định nghĩa từ các tiên đề, bằng cách sử dụng luận lý học (lôgic) và ký hiệu toán học. Các quan điểm khác của nó được miêu tả trong triết học toán. Do khả năng ứng dụng rộng rãi trong nhiều khoa học, toán học được mệnh danh là "ngôn ngữ của vũ trụ".

Nguồn : Wikipedia - Bách khoa toàn thư

Tâm sự 8

Lớp 8 - Năm thứ ba ở cấp trung học cơ sở, học tập bắt đầu nặng dần, sang năm lại là năm cuối cấp áp lực lớn dần nhưng các em vẫn phải chú ý sức khỏe nhé!

Nguồn : ADMIN :))

Copyright © 2021 HOCTAP247