a) Cho A = 4 + 2^2 + 2^3 + … +2^2005. Chứng tỏ rằng A

Câu hỏi :

a) Cho A = 4 + 22 + 23 + … +22005. Chứng tỏ rằng A là một lũy thừa cơ số 2.

* Đáp án

* Hướng dẫn giải

a) Ta có:

A = 22 + 23 + … +22005

A – 4 = 22 + 23 + … +22005

2(A – 4) = 23 + 24 + … + 22006

2(A – 4) – (A – 4) = (23 + 24 + … + 22006) – (22 + 23 + … +22005) = 22006 – 22

A – 4 = 22006 – 4

A = 22006.

Vậy A là một lũy thừa bậc 2006 cơ số 2.

b) B = 5 + 52 + 53 + … + 52021

Ta thấy các lũy thừa cơ số 5 là một số có chữ số tận cùng là 5 mà B có 2021 số hang là lũy thừa của cơ số 5 nên chữ số tận cùng của B là 5. Suy ra B + 8 có kết quả là một số có chữ số tận cùng là 3 nên B + 8 không thể là bình phương của một số tự nhiên (vì không có bình phương số tự nhiên nào có chữ số tận cùng là 3). 

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải SBT Toán 6 Chương 1: Số tự nhiên - Bộ Cánh diều !!

Số câu hỏi: 140

Copyright © 2021 HOCTAP247