a) Đặt d = ƯCLN(n + 2, n + 3).
Suy ra n + 2 chia hết cho d, n + 3 chia hết cho d.
Ta có n + 3 = n + 2 + 1.
Mà n + 2 chia hết cho d nên 1 chia hết cho d. Do đó d = 1.
Vậy n + 2 và n + 3 là hai số nguyên tố cùng nhau với mọi số tự nhiên n.
b) Đặt d = ƯCLN(2n + 1, 9n + 4).
Ta có 9(2n + 1) = 18n + 9 = 2(9n + 4) + 1.
Mà 9n + 4 chia hết cho d nên 1 cũng chia hết cho d. Do đó d = 1.
Vậy 2n + 1, 9n + 4 là hai số nguyên tố cùng nhau với mọi số tự nhiên n.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247