a) Có tồn tại số tự nhiên n để n^2 + n + 2 chia hết cho 5

Câu hỏi :

a) Có tồn tại số tự nhiên n để n2 + n + 2 chia hết cho 5 hay không?

* Đáp án

* Hướng dẫn giải

a) Đặt x = n2 + n + 2

Nếu n chia hết cho 5 thì x chia 5 dư 2.

Nếu n chia cho 5 dư 1 thì x chia cho 5 dư 4.

Nếu n chia cho 5 dư 2 thì x chia cho 5 dư 3.

Nếu n chia cho 5 dư 3 thì x chia cho 5 dư 4.

Nếu n chia cho 5 dư 4 thì x chia cho 5 dư 2.

Vậy x không chia hết cho 5 với mọi số tự nhiên n.

b) Ta có n = a + (a + 1) + (a + 2) + (a + 3) + (a + 4) với a là số tự nhiên

Khi đó n = 5a + 10 = 5.(a + 2) chia hết cho 5.

Ta lại có n = b + (b + 1) + (b + 2) + (b + 3) + (b + 4) + (b + 5) + (b + 6) với b là số tự nhiên.

Khi đó n = 7b + 21 = 7.(b + 3) chia hết cho 7.

Do đó n vừa chia hết cho 5 vừa chia hết cho 7 nên n là bội chung của 5 và 7.

Mà n là nhỏ nhất nên n là BCNN(5; 7).

Ta có 5 = 5, 7 = 7.

BCNN(5, 7) = 5.7 = 35.

Vậy n = 35.

Câu hỏi trên thuộc đề trắc nghiệm dưới đây !

Giải SBT Toán 6 Chương 2: Số nguyên - Bộ Cánh diều !!

Số câu hỏi: 70

Copyright © 2021 HOCTAP247