a) Ta có 2x – 1 là bội của x – 3 nên 2x – 1 chia hết cho x – 3.
Ta lại có 2x – 1 = 2x – 6 + 5 = 2(x – 1) + 5.
Vì 2(x – 1) chia hết cho x – 1 nên 5 phải chia hết cho x – 1 hay x – 1 thuộc Ư(5) = {1; -1; 2; -2}.
Suy ra x thuộc {2; 0; 3; -1}.
Vậy x ∈ {2; 0; 3; -1}.
b) Ta có 2x + 1 là ước của 3x + 2 nên 3x + 2 chia hết cho 2x + 1
Suy ra: 2(3x + 2) = 6x + 4 = 3(2x + 1) + 1 cũng chia hết cho 2x + 1
Mà 3(2x + 1) chia hết cho 2x + 1 nên 1 cũng phải chia hết cho 2x + 1 hay 2x + 1 thuộc Ư(1) = {1; -1}.
Suy ra x thuộc {0; -1}.
Vậy x ∈ {0; -1}.
c)
+) Nếu x chia hết cho 3 thì x có dạng x = 3k với . Khi đó:
(x – 4)(x + 2) + 6 = (3k – 4)(3k + 2) + 6 không chia hết cho 3 nên không là bội của 9.
+) Nếu x chia cho 3 thì x có dạng x = 3k + 1 với . Khi đó:
(x – 4)(x + 2) + 6 = (3k – 3)(3k + 3) + 6 = 9(k – 1)(k + 3) + 6.
Vì 9(k – 1)(k + 3) chia hết cho 9 mà 6 không chia hết cho 9 nên 9(k – 1)(k + 3) + 6 không chia hết cho 9 hay (x – 4)(x + 2) + 6 không là bội của 9.
+) Nếu x chia cho 3 dư 2 thì x có dạng x = 3k + 2 với . Khi đó:
(x – 4)(x + 2) + 6 = (3k – 2)(3k + 4) + 6 không chia hết cho 3 nên không là bội của 9.
Vậy (x – 4)(x + 2) + 6 không là bội của 9 với mọi x nguyên.
d)
+) Nếu x chia hết cho 3 thì x có dạng x = 3k với . Khi đó:
(x – 2)(x + 5) + 11 = (3k – 2)(3k + 5) + 11 không chia hết cho 3 nên không là bội của 9.
+) Nếu x chia cho 3 thì x có dạng x = 3k + 1 với . Khi đó:
(x – 2)(x + 5) + 6 = (3k – 1)(3k + 6) + 6 = 3(3k – 1)(k + 2) + 11.
Vì 3(3k – 1)(k + 2) chia hết cho 3 mà 11 không chia hết cho 3 nên 3(3k – 1)(k + 2) + 11 không chia hết cho 3 nên không là bội của 9.
+) Nếu x chia cho 3 dư 2 thì x có dạng x = 3k + 2 với . Khi đó:
(x – 2)(x + 5) + 11 = (3k – 4)(3k + 7) + 11 không chia hết cho 3 nên không là bội của 9.
Vậy (x – 4)(x + 2) + 6 không là bội của 9 với mọi x nguyên.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247