Số các số nguyên x để [ frac{{5x}}{3}: frac{{10{x^2} + 5x}}{{21}} ] có giá trị là số nguyên là

Câu hỏi :

Số các số nguyên x để \[\frac{{5x}}{3}:\frac{{10{x^2} + 5x}}{{21}}\] có giá trị là số nguyên là

A.1 

B.4  

C.2     

D.3

* Đáp án

* Hướng dẫn giải

\[\frac{{5x}}{3}:\frac{{10{x^2} + 5x}}{{21}} = \frac{{5x}}{3}.\frac{{21}}{{10{x^2} + 5x}} = \frac{{5x.21}}{{3.5x.\left( {2x + 1} \right)}} = \frac{7}{{2x + 1}}\]

Để biểu thức đã cho có giá trị là số nguyên thì \[\frac{7}{{2x + 1}}\] nguyên

Do đó 2x + 1 ∈ Ư(7) = {±1; ±7}

Ta có bảng:

Vậy x ∈ {0; −1; 3; −4} suy ra có 4 giá trị thỏa mãn.

Đáp án cần chọn là: B

Copyright © 2021 HOCTAP247