Cho ({x_1} ) là giá trị thỏa mãn [ frac{1}{2} - ( frac{2}{3}x - frac{1}{3}) = frac{{ - 2}}{3} ] và ({x_2} ) là giá trị thỏa mãn [ , frac{5}{6} - x = frac{{ - 1}}{{12}} + frac{4}{3}...

Câu hỏi :

Cho \({x_1}\)  là giá trị thỏa mãn \[\frac{1}{2} - (\frac{2}{3}x - \frac{1}{3}) = \frac{{ - 2}}{3}\] và \({x_2}\)  là giá trị thỏa mãn \[\,\frac{5}{6} - x = \frac{{ - 1}}{{12}} + \frac{4}{3}\] . Khi đó \({x_1} + {x_2}\) bằng

A. \[\frac{8}{3}\]

B. \[\frac{{ - 5}}{{12}}\]

C. \[\frac{9}{4}\]

D. \[\frac{{11}}{6}\]

* Đáp án

* Hướng dẫn giải

\[\begin{array}{*{20}{l}}{ + )\,\,\frac{1}{2} - \left( {\frac{2}{3}x - \frac{1}{3}} \right) = \frac{{ - 2}}{3}}\\{\frac{2}{3}x - \frac{1}{3} = \frac{1}{2} - \left( {\frac{{ - 2}}{3}} \right)}\\{\frac{2}{3}x - \frac{1}{3} = \frac{7}{6}}\\{\frac{2}{3}x = \frac{7}{6} + \frac{1}{3}}\\{\frac{2}{3}x = \frac{3}{2}}\\{x = \frac{3}{2}:\frac{2}{3}}\\{x = \frac{9}{4}.}\end{array}\]

Nên \[{x_1} = \frac{9}{4}\]

\[\begin{array}{*{20}{l}}{ + )\,\,\frac{5}{6} - x = \frac{{ - 1}}{{12}} + \frac{4}{3}}\\{\frac{5}{6} - x = \frac{5}{4}}\\{x = \frac{5}{6} - \frac{5}{4}}\\{x = \frac{{ - 5}}{{12}}.}\end{array}\]

Nên \[{x_2} = - \frac{5}{{12}}\]

Từ đó \[{x_1} + {x_2} = \frac{9}{4} + \left( { - \frac{5}{{12}}} \right) = \frac{{11}}{6}\]

Đáp án cần chọn là: D

Copyright © 2021 HOCTAP247