Tính giá trị của biểu thức A = (11.3^22.3^7 - 9^15) : (2.3^13)^2

Câu hỏi :

Tính giá trị của biểu thức \[A = \frac{{{{11.3}^{22}}{{.3}^7} - {9^{15}}}}{{{{\left( {{{2.3}^{13}}} \right)}^2}}}\]

A. A = 18

B. A = 9

C. A = 54

D. A = 6

* Đáp án

* Hướng dẫn giải

Ta có: \[A = \frac{{{{11.3}^{22}}{{.3}^7} - {9^{15}}}}{{{{\left( {{{2.3}^{13}}} \right)}^2}}}\]

\[ = \frac{{{{11.3}^{22}}^{ + 7} - {{\left( {{3^2}} \right)}^{15}}}}{{{2^2}.{{\left( {{3^{13}}} \right)}^2}}} = \frac{{{{11.3}^{29}} - {3^{2.15}}}}{{{2^2}{{.3}^{13.2}}}}\]

\[ = \frac{{{{11.3}^{29}} - {3^{30}}}}{{{2^2}{{.3}^{26}}}} = \frac{{{{11.3}^{29}} - {3^{29}}.3}}{{{2^2}{{.3}^{26}}}}\]

\[ = \frac{{{3^{29}}\left( {11 - 3} \right)}}{{{2^2}{{.3}^{26}}}} = \frac{{{3^{29}}.8}}{{{{4.3}^{26}}}}\]

\[ = {2.3^{29 - 26}} = {2.3^3} = 54\]

Vậy A = 54

Đáp án cần chọn là: C

Copyright © 2021 HOCTAP247