Hướng dẫn giải:
Ta có:
\(\frac{1}{{200}} < \frac{1}{{101}} < \frac{1}{{100}}\)
\(\frac{1}{{200}} < \frac{1}{{102}} < \frac{1}{{100}}\)
\(\frac{1}{{200}} < \frac{1}{{103}} < \frac{1}{{100}}\)
…
\(\frac{1}{{200}} < \frac{1}{{199}} < \frac{1}{{100}}\)
Suy ra:
\(\frac{1}{{200}} + \frac{1}{{200}} + \frac{1}{{200}} + ... + \frac{1}{{200}} < \frac{1}{{101}} + \frac{1}{{102}} + \frac{1}{{103}} + ... + \frac{1}{{199}} < \frac{1}{{100}} + \frac{1}{{100}} + \frac{1}{{100}} + ... + \frac{1}{{100}}\)
Hay \[99.\frac{1}{{200}} < \frac{1}{{101}} + \frac{1}{{102}} + \frac{1}{{103}} + ... + \frac{1}{{199}} < 99.\frac{1}{{100}}\]
\(\frac{{99}}{{200}} + \frac{1}{{200}} < \frac{1}{{101}} + \frac{1}{{102}} + \frac{1}{{103}} + ... + \frac{1}{{199}} + \frac{1}{{200}} < \frac{{99}}{{100}} + \frac{1}{{100}}\)
\(\frac{{100}}{{200}} < \frac{1}{{101}} + \frac{1}{{102}} + \frac{1}{{103}} + ... + \frac{1}{{199}} + \frac{1}{{200}} < \frac{{100}}{{100}}\)
Do đó \(\frac{{100}}{{200}} < A < \frac{{100}}{{100}}\)
Suy ra \(\frac{1}{2} < A < 1.\)
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247