Lớp 6A có 54 học sinh, 6B có 42 và 6C có 48 học sinh, trong ngày

Câu hỏi :

Lớp 6A có 54 học sinh, 6B có 42 và 6C có 48 học sinh, trong ngày khai giảng ba lớp cùng xếp thành 1 số hàng dọc như nhau, mà không có người lẻ hàng. Tính số hàng dọc nhiều nhất có thể xếp được?


A. 2;



B. 3;



C. 6;



D. 8.


* Đáp án

* Hướng dẫn giải

Đáp án đúng là: C

Gọi a là số hàng dọc có thể xếp được (a \( \in \)\(\mathbb{N}\), a < 42)

Theo bài ra ta có: 54\( \vdots \)a, 42\( \vdots \)a, 48\( \vdots \)a và a là lớn nhất

Nên a = ƯCLN(54, 42, 48)

Ta phân tích 54; 42; 48 ra thừa số nguyên tố:

54 = 2.33

42 = 2.3.7

48 = 24.3

Ta thấy 2 và 3 là các thừa số nguyên tố chung của 54; 42; 48. Số mũ nhỏ nhất của 2 là 1, số mũ nhỏ nhất của 3 là 1 nên:

ƯCLN(54, 42, 48) = 2.3 = 6

Vậy có thể chia nhiều nhất 6 hàng.

Copyright © 2021 HOCTAP247