Cặp số nguyên (x; y) thỏa mãn: xy – x – 2y = 1 là:
A. (3; 4); (-5; -2);
B. (3; 4); (-5; 2);
C. (-1; 0); (1; -2);
D. (-1; 0); (-1; 2).
Đáp án đúng là: C
Ta có: xy – x – 2y = 1
xy – x – 2y + 2 = 1 + 2
(x. y – x) – (2y – 2) = 3
x. (y – 1) – 2(y – 1) = 3
(x – 2). (y – 1) = 3
Vì \[x,y \in \mathbb{Z}\] nên \[x - 2,y - 1 \in \mathbb{Z}\] và (x – 2). (y – 1) = 3.
Vậy \[x - 2,y - 1 \in \]Ư (3)
Ta có: Ư (3) = {-3; -1; 1; 3}.
Ta có bảng sau:
x – 2 |
-3 |
-1 |
1 |
3 |
x |
-1 |
1 |
3 |
5 |
y – 1 |
-1 |
-3 |
3 |
1 |
Y |
0 |
-2 |
4 |
2 |
Vậy (x; y) \[ \in \] {(-1; 0); (1; -2); (3; 4); (5; 2)}.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247