Chứng tỏ rằng \(D = \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + \frac{1}{{{4^2}}} + ... + \frac{1}{{{{10}^2}}}...

Câu hỏi :

Chứng tỏ rằng \(D = \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + \frac{1}{{{4^2}}} + ... + \frac{1}{{{{10}^2}}} < 1\)

* Đáp án

* Hướng dẫn giải

\(\begin{array}{l}
\frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + \frac{1}{{{4^2}}} + ... + \frac{1}{{{{10}^2}}} < \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}}... + \frac{1}{{9.10}}\\
 \Rightarrow \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + \frac{1}{{{4^2}}} + ... + \frac{1}{{{{10}^2}}} < 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + ... + \frac{1}{9} - \frac{1}{{10}}\\
 \Rightarrow \frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + \frac{1}{{{4^2}}} + ... + \frac{1}{{{{10}^2}}} < 1 - \frac{1}{{10}} = \frac{9}{{10}} < 1
\end{array}\)

Copyright © 2021 HOCTAP247