Có bao nhiêu số tự nhiên có bốn chữ số khác nhau trong đó có

Câu hỏi :

Có bao nhiêu số tự nhiên có bốn chữ số khác nhau trong đó có đúng một chữ số 3?

* Đáp án

* Hướng dẫn giải

Số có dạng 3abc : chữ số a có 9 cách chọn, chữ số b có 8 cách chọn, chữ số c có 7 cách chọn. Các số thuộc loại này có: 9.8.7 = 507 số.

Số có dạng a3bc: chữ số a có 8 cách chọn, chữ số b có 8 cách chọn, chữ số c có 7 cách chọn. Các số thuộc loại này có : 8.8.7 = 448 số

Số đếm có dạng ab3c : chữ số a có 8 cách chọn, chữ số b có 8 cách chọn, chữ số c có 7 cách chọn. Các số thuộc loại này có 8.8.7 = 448 số.

Số đếm có dạng abc3 : chữ số a có 8 cách chọn, chữ số b có 8 cách chọn, chữ số c có 7 cách chọn. Các số thuộc loại này có 8.8.7 = 448 số.

Vậy số số tự nhiên có bốn chữ số khác nhau trong đó có đúng một chữ số 3 là: 507 + 448 + 448 +448 = 1851 số

Nhận xét: Bài toán yêu cầu có duy nhất (đúng một) số 3, các chữ số chỉ lặp lại có đúng 1 lần vì vậy khi giải toán cần đọc kỹ yêu cầu đề toán.

Copyright © 2021 HOCTAP247