Cho hàm số y=f(x) có đạo hàm trên R là f'(x)=m^2 x^4 -m(m+2)x^3 +2(m+1)x^2 -(m+2)x +m

Câu hỏi :

Cho hàm số y=f(x) có đạo hàm trên R là f'x=m2x4-mm+2x3+2m+1x2-m+2x+m. Số các giá trị nguyên dương của m để hàm số đồng biến trên R là

A. 1.

B. 3.

C. 0.

D. 2.

* Đáp án

D

* Hướng dẫn giải

Chọn D.

Hàm số y=f(x) đồng biến trên Rf'x0,xR

m2x4-mm+2x3+2m+1x2-m+2x+m0,xRx-1m2x3-2mx+2x-m0,xR 1

Đặt gx=m2x3-2mx+2x-m.

Từ (1) suy ra g1=0m=1m=2

Thử lại, với m=1 thì

1x-1x3-2x+2x-10,xRx-12x2+x+1,xR.

Điều này luôn đúng.

Thử lại, với m=2 thì

1x-12x3-x-10,xRx-12x2+(x+1)2,xR.

Điều này luôn đúng.

Vậy m=1, m=2 thỏa mãn bài toán.

Copyright © 2021 HOCTAP247