Cho lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh a

Câu hỏi :

Cho lăng trụ ABC.A'B'C' có đáy ABC là tam giác đều cạnh a. Hình chiếu của A' lên mặt phẳng (ABC) trùng với trung điểm BC. Tính khoảng cách d giữa hai đường thẳng B'C' và AA' biết góc giữa hai mặt phẳng (ABB'A') và (A'B'C') bằng 60°

A. d=3a4.

B. d=3a714.

C. d=a2114.

D. d=a34.

* Đáp án

B

* Hướng dẫn giải

Chọn B.

Gọi M,M' lần lượt là trung điểm của BC, B'C'

Gọi N,E lần lượt là trung điểm của AB, BN

Góc giữa hai mặt phẳng (ABB'A') và (A'B'C') bằng góc giữa hai mặt phẳng (ABB'A') và (ABC)

CNAB và ME//CN nên MEAB1

Mặt khác A'MABCA'MAB2

Từ (1) và (2) ta có

ABA'EMABB'A';ABC^=A'EM^=600.CN=AM=a32;ME=12CN=a34.

Trong tam giác vuông A'EM có A'M=ME.tan600=3a4.

Có A'M'B'C'3

A'MABCA'MA'B'C'A'MB'C'4

Từ (3) và (4) suy ra B'C'AMM'A'.

Trong mặt phẳng (AMM'A') từ M' kẻ M'KAA'M'K chính là đoạn vuông góc chung giữa AA' và B'C'

Trong mặt phẳng (AMM'A') từ M kẻ MIAA'MI=M'K.

Trong tam giác A'M'A vuông tại M có 1MI2=1AM2+1MA'2=289a2MI=3a714.

Vậy d=3a714.

Copyright © 2021 HOCTAP247