Biết điểm M(0;4) là điểm cực đại của đồ thị hàm số

Câu hỏi :

Biết điểm M(0;4) là điểm cực đại của đồ thị hàm số fx=x3+ax2+bx+a2. Tính f(3)

A. f(3)=17

B. f(3)=34

C. f(3)=49

D. f(3)=13

* Đáp án

D

* Hướng dẫn giải

Chọn D.

Ta có f'x=3x2+2ax+b

Điều kiện cần để điểm M(0;4) là điểm cực đại của hàm số f(x) là:

f'0=0f0=4b=0a2=4a=2b=0a=-2b=0

Điều kiện đủ.

Trường hợp 1: a=2b=0 ta có fx=x3+2x2+4,f'x=3x2+4x,f'x=0x=0x=-43

Bảng xét dấu f'(x)

Nên M(0;4) là điểm cực tiểu của đồ thị hàm số (loại).

Vậy fx=x3-2x2+4f3=13.

Copyright © 2021 HOCTAP247