Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại B và AC=2a

Câu hỏi :

Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại B và AC=2a biết rằng (A'BC) hợp với đáy (ABC) một góc 45°.Thể tích khối lăng trụ ABC.A'B'C' bằng

A. a322

B. a333

C. a33

D. a32

* Đáp án

D

* Hướng dẫn giải

Chọn D.

Tam giác ABC là tam giác vuông cân tại B. Gọi BA=BC=b

Áp dụng định lí Pitago vào trong tam giác vuông ABC ta có BA2+BC2=ACb2=2ab=a2.

Diện tích đáy là SABC=12BA.BC=12b2=12a22=a2.

Ta có A'BCABC=BCBCAA'BAA'BABC=ABAA'BA'BC=A'B. Do đó góc giữa (A'BC) và đáy (ABC) bằng góc giữa AB và A'B và bằng góc ABA'^, theo giả thiết, ta có ABA'^=450.

Tam giác AA'B vuông cân tại A nên AA'=AB=a2.

Thể tích khối lăng trụ ABC.A'B'C' bằng V=AA'.SABC=a2.a2=a32.

Copyright © 2021 HOCTAP247