Cho hàm số y=x^3 +(m-1)x^2 -3mx+2m+1 có đồ thị (Cm) , biết rằng đồ thị

Câu hỏi :

Cho hàm số y=x3+(m-1)x2-3mx+2m+1 có đồ thị Cm, biết rằng đồ thị Cm luôn đi qua hai điểm cố định A, B. Có bao nhiêu số nguyên dương m thuộc đoạn [-2020;2020] để Cm có tiếp tuyến vuông góc với đường thẳng ?

A. 4041.

B. 2021.

C. 2019.

D. 2020.

* Đáp án

D

* Hướng dẫn giải

Chọn D.

Hàm số được viết lại thành x2-3x+2m+x3-x2+1-y=0.

Một điểm Mx0;y0 là điểm cố định của đồ thị hàm số thì phương trình x02-3x0+2m+x03-x02+1-y0=0 phải nghiệm đúng với mọi m xảy ra khi và chỉ khi x02-3x0+2=0x03-x02+1-y0=0x0=1;y0=1x0=2;y0=5.

Giả sử A1;1,B2;5AB=1;4 khi đó hệ số góc của đường thẳng AB là k=4

Đặt fx=x3+m-1x2-3mx+2m+1

Để trên đồ thị hàm số có điểm mà tiếp tuyến tại đó vuông góc với đường thẳng AB thì hệ số góc tại tiếp điểm phải bằng k'=-14. Điều đó xảy ra khi và chỉ khi f'x=-14 có nghiệm.

Ta có f'x=3x2+2m-1x-3m.

Phương trình f'x=-143x2+2m-1x-3m=-141.

Phương trình (1) có nghiệm khi Δ'0m-;-7-432-7+432;+.

Với -7+432-0,03 nên các số nguyên dương m-2020;2020 là 1;2;3;...;2020.

Vậy có 2020 số thỏa mãn yêu cầu bài toán.

Copyright © 2021 HOCTAP247