Cho hàm số f(x) có bảng biến thiên của hàm số y=f'(x) như hình vẽ bên

Câu hỏi :

Cho hàm số f(x) có bảng biến thiên của hàm số y=f'(x) như hình vẽ bên. Tính tổng các giá trị nguyên của tham số m-10;10 để hàm số y=f3x-1+x3-3mx đồng biến trên khoảng (-2;1)?

A. -49

B. -39

C. -35

D. 35

* Đáp án

B

* Hướng dẫn giải

Chọn B.

Cách 1: Ta có: y'=3f'3x-1+3x2-3m=3f'3x-1+x2-m

Để hàm số đồng biến trên (-2;1) thì:

y'0,x-2;1f'3x-1+x2-m0,x-2;1f'3x-1+x2m,x-2;1mmin-2;1f'3x-1+x2

Đặt f'3x-1=gx và x2=hx

Quan sát bảng biến thiên ta có:

f'3x-1-4=f'0,3x-1-7;2hx=x20=h0,x-2;1f'3x-1-4=f'0,x-2;1hx=x20=h0,x-2;1f'3x-1+hx-4+0=-4,x=0min-2;1gx+hx=-4,x=0

Do đó: min-2;1f'3x-1+x2=-4

m-10;10 và m-4 nên tổng các giá trị nguyên của m thỏa mãn đề bài là -39

Cách 2:

Xét hàm số y=f3x-1+x3-3mx

Ta có: y'=3f'3x-1+3x2-3m=3f'3x-1+x2-m

Để hàm số đồng biến trên (-2;1) thì:

y'0,x-2;1f'3x-1-x2+m,x-2;1

Đặt gx=f'3x-1-x2+m=hx,x-2;1

Đặt 3x-1=tx=t+13t-7;2f'tht=-t2+2t+19+m,t-7;2*

Ta có đồ thị hàm số ht=-t2+2t+19+m có đỉnh I(-1;m)

Vậy (*) thỏa mãn khi đồ thị ht=-t2+2t+19+m nằm dưới đồ thị y=f'(t)

Suy ra: m-4.

Với giả thiết m-10;10,mZm-9;-4m=-9-4m=-39.

Copyright © 2021 HOCTAP247