Cho hình lăng trụ đứng ABC.A'B'C' có AB=AC=a góc BAC =120 độ

Câu hỏi :

Cho hình lăng trụ đứng ABC.A'B'C' có AB=AC=a góc BAC=1200,AA'=a. Gọi M,N lần lượt là trung điểm của B'C' và CC'. Số đo góc giữa mặt phẳng (AMN) và mặt phẳng (ABC) bằng

A. 60°

B. 30°

C. arccos34.

D. arcsin34.

* Đáp án

C

* Hướng dẫn giải

Chọn C.

Ta có ΔA'MC' vuông tại M có

A'C'M^=300A'M=12.A'C'=22MC'=a32B'C'=a3.

Gọi α là góc giữa hai mặt phẳng (AMN) và mặt phẳng ABCα=AMN;A'B'C'^

Tam giác A'MC' là hình chiếu của tam giác AMN trên mặt phẳng (A'B'C') nên cosα=SA'MC'SAMN

Ta có

SA'MC'=12.SABC=14.AB.AC.sinBAC^=3a28.AN2=AC2+CN2=a2+a22=5a24AN=a52.AM2=AA'2+A'M2=AA'2+A'C'22=5a24AM=a52MN2=C'N2+C'M2=a24+a322=a2MN=a.

Gọi I là trung điểm của MNAIMN

AI=AN2-IN2=a

SAMN=12.AI.MN=a22cosα=34

Vậy số đo góc giữa mặt phẳng (AMN) và mặt phẳng (ABC) bằng arccos34.

Copyright © 2021 HOCTAP247