Cho hàm số f(x)=ax^4 +bx^3 +cx^2 +dx+e (a khác 0) có đồ thị của đạo hàm

Câu hỏi :

Cho hàm số fx=ax4+bx3+cx2+dx+e,a0 có đồ thị của đạo hàm f'(x) như hình vẽ. Biết rằng e>m

A. 7.

B. 6.

C. 10.

D. 14.

* Đáp án

A

* Hướng dẫn giải

Chọn A.

Ta có:

y'=f'x-2f''fx-2xy'=0f'x-2f''fx-2x=0f'x-2=01f''fx-2x=02

Xét phương trình 1f'x=2.

Từ đồ thị ta có phương trình (1) có 3 nghiệm phân biệt x1,0,x2x1<m<0<n<x2.

Xét phương trình (2)

Trước hết ta có:

f'x=4ax3+3bx2+2cx+d.f'0=2d=2.

Suy ra:

fx=ax4+bx3+cx2+2x+e.2f''fx-2x=0fx-2x=mfx-2x=nax4+bx3+cx2+e=max4+bx3+cx2+e=nax4+bx3+cx2=m-e2aax4+bx3+cx2=n-e2b.

Số nghiệm của hai phương trình (2a) và (2b) lần lượt bằng số giao điểm của hai đường thẳng y=m-e và y=n-e (trong đó m-e<n-e<0) với đồ thị hàm

gx=ax4+bx3+cx2.g'x=4ax3+3bx2+2cx.g'x=04ax3+3bx2+2cx=04ax3+3bx3+2cx+2=2f'x=2x=x1<0x=0x=x2>0

Từ đồ thị hàm số y=f'(x) suy ra:

+) limx-f'x=+ nên a<0 nên limx-gx=-,limx+gx=-

Bảng biến thiên của hàm số y=g(x)

Từ bảng biến thiên suy ra hai phương trình (2a), (2b) mỗi phương trình có hai nghiệm phân biệt

(hai phương trình không có nghiệm trùng nhau) và khác x1,0,x2.

Suy ra phương trình f'x-2f''fx-2x=0 có 7 nghiệm đơn phân biệt. Vậy hàm số y=f'fx-2x có 7 điểm cực trị.

Copyright © 2021 HOCTAP247