Cho hình chóp S.ABC, đáy là tam giác vuông tại B, cạnh bên SA vuông góc với mặt đáy. Biết SA = AB = BC và diện tích

Câu hỏi :

Cho hình chóp S.ABC, đáy là tam giác vuông tại B, cạnh bên SA vuông góc với mặt đáy. Biết SA = AB = BC và diện tích mặt cầu ngoại tiếp hình chóp bằng 3π. Thể tích khối chóp là:

A. 12

B. 13

C. 16

D. 32

* Đáp án

C

* Hướng dẫn giải

 (VD): Cho hình chóp S.ABC, đáy là tam giác vuông tại B, cạnh bên SA vuông góc với mặt đáy. Biết SA = AB = BC và diện tích mặt cầu ngoại tiếp hình chóp bằng . Thể tích khối chóp là:  (ảnh 3)

Gọi O là trung điểm của AC. Vì tam giác ABC vuông tại B nên O là tâm đường tròn ngoại tiếp tam giác ABC.

Gọi I, M là trung điểm của SC, SA. Ta có IO là đường trung bình của tam giác SAC IO//SA.

SA(ABC)IO(ABC)IO là trực của (ABC)IA=IB=IC.

Lại có IM là đường trung bình của tam giác SAC nên IM // AC IMSAIM là trung trực của SA, do đó IS=IA.

IA=IB=IC=IS \[ \Rightarrow I\] là tâm mặt cầu ngoại tiếp chóp SABC.

⇒ Bán kính của mặt cầu ngoại tiếp chóp S.ABC là R=12SC.

Ta lại có \[4\pi {R^2} = 3\pi \Leftrightarrow R = \frac{{\sqrt 3 }}{2} \Rightarrow SC = \sqrt 3 \].

Đặt SA=AB=BC=x, ta có tam giác SAB vuông cân tại A nên SB=x2.

Ta có: {BCABBCSABC(SAB)BCSBΔSBC vuông tại B.

\[ \Rightarrow S{B^2} + B{C^2} = S{C^2} \Rightarrow 2{x^2} + {x^2} = 3 \Leftrightarrow x = 1\]

Vậy thể tích khối chóp là V=13SA.SΔABC=13SA.12AB.BC=16x3=16.

Đáp án C.

Copyright © 2021 HOCTAP247