Cho hình lăng trụ đứng ABC.A’B’C’. Đáy là tam giác vuông tại A, có BC = 2AC = 2a. Đường thẳng AC’ tạo với

Câu hỏi :

Cho hình lăng trụ đứng ABC.A’B’C’. Đáy là tam giác vuông tại A, có BC = 2AC = 2a. Đường thẳng AC’ tạo với mặt phẳng (BCC’B’) một góc 300. Diện tích của mặt cầu ngoại tiếp hình lăng trụ đã cho bằng;

A.12πa2

B.6πa2

C.4πa2

D.3πa2

* Đáp án

B

* Hướng dẫn giải

 (VD): Cho hình lăng trụ đứng ABC.A’B’C’. Đáy là tam giác vuông tại A, có BC = 2AC = 2a. Đường thẳng AC’ tạo với mặt phẳng (BCC’B’) một góc . Diện tích của mặt cầu ngoại tiếp hình lăng trụ đã (ảnh 3)

Gọi O, O’ lần trung điểm của BC và B’C’.

Vì tam giác ABC, A’B’C’ lần lượt vuông tại A và A’ nên O, O’ lần lượt là tâm mặt cầu ngoại tiếp tam giác ABC, A’B’C’. Lại có OO’ vuông góc với hai đáy nên OO’ là trục hai đáy.

Gọi I là trung điểm của OO’ =>I là tâm mặt cầu ngoại tiếp khối lăng trụ.

Trong (ABC) kẻ AHBC(HBC) ta có {AHBCAHBB'AH(BCC'B')HC' là hình chiếu của AC’ lên (BCC’B’), do đó (AC';(BCC'B'))=(AC';HC)=AC'H=300.

Xét tam giác vuông ABC ta có AB=BC2AC2=4a2a2=a3AH=AB.ACBC=a3.a2a=a32.

Xét tam giác AC’H vuông tại H có: AC'=AHsin300=a32:12=a3.

Xét tam giác vuông AA’C’ có: AA'=AC'2A'C'2=3a2a2=a2=OO'IO=12OO'=a22.

Xét tam giác vuông IOC có: \[IC = \sqrt {I{O^2} + O{C^2}} = \sqrt {\frac{{{a^2}}}{2} + {a^2}} = \frac{{a\sqrt 6 }}{2} = R\].

Vậy diện tích mặt cầu ngoại tiếp khối lăng trụ là: S=4πR2=4π.(a62)2=6πa2.

Đáp án B.

Copyright © 2021 HOCTAP247