Cho hàm số f(x) liên tục trên R, có bảng biến thiên như hình vẽ dưới đây: Đặt g(x)=|m+f(x+1)| (m là tham số).

Câu hỏi :

Cho hàm số f(x) liên tục trên , có bảng biến thiên như hình vẽ dưới đây:

A. m<1 hoặc m>3

B.1<m<3

C. m1 hoặc m3

D. 1m3

* Đáp án

C

* Hướng dẫn giải

Dựa vào BBT ta thấy f'(x)=0[x=x1x=x2.

Đặt h(x)=m+f(x+1) ta có \[h'\left( x \right) = f'\left( {x + 1} \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x + 1 = {x_1}}\\{x + 1 = {x_2}}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = {x_1} - 1}\\{x = {x_2} - 1}\end{array}} \right.\], do đó hàm số h(x)=m+f(x+1)có 2 điểm cực trị.

Suy ra để hàm số g(x)=|h(x)|=|m+f(x+1)| có đúng 3 điểm cực trị thì phương trình m+f(x+1)=0 phải có nghiệm bội lẻ duy nhất.

Ta có: m+f(x+1)=0f(x+1)=m, dựa vào BBT ta thấy đường thẳng  (VD): Cho hàm số liên tục trên , có bảng biến thiên như hình vẽ dưới đây:Đặt (m là tham số). Tìm tất cả các giá trị của m để hàm số có đúng 3 điểm cực trị.  (ảnh 15)cắt qua (không tính điểm tiếp xúc) đồ thị hàm số y=f(x+1) tại 1 điểm duy nhất khi và chỉ khi [m1m3[m1m3.

Đáp án C.

Copyright © 2021 HOCTAP247