Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Mặt phẳng đi qua A và vuông góc với A’C chia hình lập phương trình

Câu hỏi :

Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Mặt phẳng đi qua A và vuông góc với A’C chia hình lập phương trình hai phần thể tích. Tính tỉ số k hai phần thể tích này, biết  (VD): Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Mặt phẳng đi qua A và vuông góc với A’C chia hình lập phương trình hai phần thể tích. Tính tỉ số k hai phần thể tích này, biết .  (ảnh 1).

A.325

B.25

C.15

D.225

* Đáp án

C

* Hướng dẫn giải

 (VD): Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Mặt phẳng đi qua A và vuông góc với A’C chia hình lập phương trình hai phần thể tích. Tính tỉ số k hai phần thể tích này, biết .  (ảnh 2)

Gọi (α) là mặt phẳng đi qua A và vuông góc với A’C.

Gọi O'=A'C'B'D'I=AO'A'C.

Vì ABCD.A’B’C’D’ là hình lập phương cạnh a nên AC=A'C'=a2;A'C=a3.

Áp dụng định lí Pytago ta có: AO'=AA'2+A'O'2=a2+a22=a62.

Áp dụng định lí Ta-lét ta có:

AIIO'=ACA'O'=2AI=2IO'=23AO'=a63.

A'IIC=A'O'AC=12A'I=12IC=13A'C=a33

Xét tam giác AA’I có: AI2+A'I2=2a23+a23=a2=AA'2, suy ra tam giác AA’I vuông tại I (Định lí Pytago đảo) AO'(α)O'(α).

Lại có {B'D'A'C'B'D'AA'B'D'(ACC'A')B'D'A'CB'D'(α)

(α)(AB'D').

Mặt phẳng (AB'D')chia khối lập phương thành 2 phần: Chóp A.A’B’D’ và khối đa diện B’C’D’.ABCD.

Ta có: VA.A'B'D'=13AA'.SA'B'D'=13AA'.12SABCD=16VABCD.A'B'C'D'

VB'C'D'.ABCD=VABCD.A'B'C'D'16VABCD.A'B'C'D'=56VABCD.A'B'C'D'.

Vậy k=VA.A'B'D'VB'C'D'.ABCD=16VABCD.A'B'C'D'56VABCD.A'B'C'D'=15

Đáp án C.

Copyright © 2021 HOCTAP247