Cho tứ diện ABCD có ABC và ABD là các tam giác đều cạnh bằng a không đổi. Độ dài CD thay đổi. Tính giá trị lớn nhất

Câu hỏi :

Cho tứ diện ABCD có ABC và ABD là các tam giác đều cạnh bằng a không đổi. Độ dài CD thay đổi. Tính giá trị lớn nhất đạt được của thể tích khối tứ diện ABCD.

A.a38

B.a3212

C.a338

D.a3312

* Đáp án

A

* Hướng dẫn giải

 (VD): Cho tứ diện ABCD có ABC và ABD là các tam giác đều cạnh bằng a không đổi. Độ dài CD thay đổi. Tính giá trị lớn nhất đạt được của thể tích khối tứ diện ABCD.  (ảnh 4)

Gọi M, N lần lượt là trung điểm của CD, AB.

Vì tam giác ABC, ABD là các tam giác đều cạnh a nên AB = AC = AD = BC = BD = a.

ΔBCD,ΔACD là các tam giác cân tại A {CDAMCDBMCD(ABM)CDMN.

Lại có ΔBCD=ΔACD(c.c.c)AM=BMΔABM cân tại M MNAB.

d(AB;CD)=MN.

Đặt CD = x (x>0) ta có AM=BM=a2+a22x24=4a2x22.

MN=4a2x24+4a2x242a24=3a2x22

Do đó ta có

VABCD=16AB.CD.d(AB;CD).sin(AB;CD)

=16a.x.3a2x22.sin(AB;CD)

Để VABCD đạt giá trị lớn nhất thì {f(x)=x.3a2x22datGTLNsin(AB;CD)=1

Áp dụng BĐT Cô-si ta có f(x)=x.3a2x2212.x2+3a2x22=3a24.

Dấu “=” xảy ra x=3a2x224x2=3a2x2x=a155.

Vậy maxVABCD=16a.3a24=a38.

Đáp án A.

Copyright © 2021 HOCTAP247