Cho hàm số y=f(x) có đạo hàm f'(x)=(x+1)^2*(x-3). Tìm số điểm cực trị của hàm số

Câu hỏi :

Cho hàm số y=f(x) có đạo hàm f'(x)=(x+1)2(x3). Tìm số điểm cực trị của hàm số g(x)=f(x2+2x+6).

A. 1

B. 2

C. 3

D. 5

* Đáp án

C

* Hướng dẫn giải

Theo bài ra ta có: f'(x)=0(x+1)2(x3)=0[x=1(nghiemboi2)x=3(nghiemdon)

Ta có:

g(x)=f(x2+2x+6)

g'(x)=2x+22x2+2x+6f'(x2+2x+6)

=x+1x2+2x+6f'(x2+2x+6)

Cho g'(x)=0[x+1=0f'(x2+2x+6)=0[x=1x2+2x+6=3

[x=1x2+2x+6=9[x=1x2+2x3=0[x=1x=1x=3 (đều là các nghiệm đơn)

(Ta không xét x2+2x+6=1f'(x) không đổi dấu qua x=-1 nên nghiệm của phương trình x2+2x+6=1không làm cho g'(x) đổi dấu).

Vậy hàm số đã cho có 3 điểm cực trị.

Đáp án C.

Copyright © 2021 HOCTAP247