Cho hình hộp ABCD.A’B’C’D’ có đáy là hình thoi cạnh a và góc BAD=60 độ. Mặt chéo ACC’A’ nằm trong mặt phẳng vuông góc với đáy

Câu hỏi :

Cho hình hộp ABCD.A’B’C’D’ có đáy là hình thoi cạnh a và BAD=600. Mặt chéo ACC’A’ nằm trong mặt phẳng vuông góc với đáy, đồng thời ACC’A’ cũng là hình thoi có A'AC=600. Thể tích khối tứ diện ACB’D’ là:

A.a336

B.a334

C.a338

* Đáp án

B

* Hướng dẫn giải

 (VD): Cho hình hộp ABCD.A’B’C’D’ có đáy là hình thoi cạnh a và . Mặt chéo ACC’A’ nằm trong mặt phẳng vuông góc với đáy, đồng thời ACC’A’ cũng là hình thoi có . Thể tích khối tứ diện ACB’D’ l (ảnh 5)

Gọi O=ACBD⇒O là trung điểm của AC và BD.

Vì ACC’A’ là hình thoi nên AA’ = AC, lại có A'AC=600 (gt) nên ΔA'AC là tam giác đều A'OAC

Ta có: \[\left\{ {\begin{array}{*{20}{l}}{\left( {ACC'A'} \right) \bot \left( {ABCD} \right) = AC}\\{A'O \subset \left( {ACC'A'} \right),{\mkern 1mu} {\mkern 1mu} A'O \bot AC}\end{array}} \right. \Rightarrow A'O \bot \left( {ABCD} \right)\].

Xét tam giác ABC có: AB = AD (do ABCD là hình thoi), BAD=600(gt) nên tam giác ABC đều cạnh a.

AO=a32AC=a3SABC=a234SABCD=a232.

ΔA'AC là tam giác đều cạnh a3A'O=a3.32=3a2.

Vậy \[{V_{ACB'D'}} = \frac{1}{3}{V_{ABCD.A'B'C'D'}} = \frac{1}{3}.A'O.{S_{ABCD}} = \frac{1}{3}.\frac{{3a}}{2}.\frac{{{a^2}\sqrt 3 }}{2} = \frac{{{a^3}\sqrt 3 }}{4}\].

Đáp án B.

Copyright © 2021 HOCTAP247