Trong không gian với hệ trục toạ độ Oxyz , cho mặt phẳng

Câu hỏi :

A. y2z=0.

A. y2z=0.

B. yz=0.

C. 2y+z=0.

D. x+z=0.

* Đáp án

A

* Hướng dẫn giải

Trong không gian với hệ trục toạ độ Oxyz , cho mặt phẳng  (ảnh 1)

Chứng minh góc giữa (P) và (Q) bé nhất là góc giữa Ox và (P).
Giả sử (Q)  (AKI). Ta có P,Q=AKI^Ox,P=AIH^
Xét ΔAHI,ΔAHK là tam giác vuông chung cạnh AH.
ΔIHK,K^=90°HKHIKAH^IAH^90°AKH^90°AIH^AKH^AIH^
Ox có VTCP i1;0;0
(P) có VTPT nP=1;1;2
Góc giữa Ox và mặt phẳng (P) là α:sinα=i.nPi.nP=16
Góc giữa (Q) và mặt phẳng (P) thoả: cosα=nP.nQnP.nQ=1sin2α=56.
Phương trình mặt phẳng Q:By+Cz=0
Ta có: B+2CB2+C2.6=56B+2C=5B2+5C24B2+4BC+C2=0C=2B
Chọn A = 1, C = -2.
Chọn đáp án A

Copyright © 2021 HOCTAP247