Cho hai số phức z1 z2 thỏa mãn Giá trị nhỏ nhất của z1 - z2 là

Câu hỏi :

A. 52

A. 52

B. 72

C. 12

D. 32

* Đáp án

* Hướng dẫn giải

Câu 49: Cho hai số phức z1 z2 thỏa mãn  Giá trị nhỏ nhất của z1 - z2  là   (ảnh 1)

Đặt z1=x1+y1i,x1,y1;z2=x2+y2i,x2,y2.

Ta có z1+5=5x1+5+y2i=5x1+52+y22=25.

Suy ra tập hợp các điểm biểu diễn số phức z1 là đường tròn C:x+52+y2=25.

Ta có z2+13i=z236ix2+1+y23i=x23+y26i

x2+12+y232=x232+y2628x2+6y2=35.

Suy ra tập hợp các điểm biểu diễn các số phức z2 là đường thẳng Δ:8x+6y=35.

C có tâm I5;0, bán kính R=5.

Khoảng cách từ I đến Δ là dI,Δ=8.5+6.03582+62=7510=152>R.

Suy ra Δ không cắt C. Do đó, nếu gọi  d là đường thẳng qua I và vuông góc với Δ,d cắt C và Δ lần lượt tại M,N và H thì một trong hai đoạn thẳng HM,HN là khoảng cách ngắn nhất nối hai điểm bất kỳ thuộc C và Δ

Suy ra giá trị nhỏ nhất của z1z2 là

z1z2min=HM=dI,ΔR=1525=52.

 

Chọn đáp án A.

Copyright © 2021 HOCTAP247