Cho hàm số bậc bay=f(x) có đồ thị như hình vẽ.Hàm số y=f(|x+1|-1) có bao nhiêu điểm cực trị?

Câu hỏi :

Cho hàm số bậc ba \(y = f\left( x \right)\) có đồ thị như hình vẽ.

A.5.

B.6.

C.7.

D. 8.

* Đáp án

* Hướng dẫn giải

Xét hàm số \(y = f\left( {\left| {x + 1} \right| - 1} \right)\)

Ta có: \(y' = \frac{{x + 1}}{{\left| {x + 1} \right|}}f'\left( {\left| {x + 1} \right| - 1} \right)\)

Khi đó \(y'\) không xác định tại \(x = - 1\)

\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}\left| {x + 1} \right| - 1 = 0\\\left| {x + 1} \right| - 1 = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 0\\x = - 2\\x = - 3\end{array} \right.\)

Ta có bảng biến thiên:

Cho hàm số bậc ba\(y = f\left( x \right)\) có đồ thị như hình vẽ.Hàm số \(y = f\left( {\left| {x + 1} \right| - 1} \right)\) có bao nhiêu điểm cực trị? (ảnh 2)

Dựa vào BBT hàm số có 5 cực trị nên chọn đáp án A.

Copyright © 2021 HOCTAP247