Cho hình lăng trụ đứng ABC.A'B'C' có điểm O và G lần lượt là tâm của mặt bên ABB'A' và trọng tâm của ABC.

Câu hỏi :

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có điểm \(O\) và \(G\) lần lượt là tâm của mặt bên \(ABB'A'\) và trọng tâm của \(\Delta ABC.\) Biết \({V_{ABC.A'B'C'}} = 270c{m^3}.\) Thể tích của khối chóp \(AOGB\) bằng

A.\(25c{m^3}.\)

B.\(30c{m^3}.\)

C.\(15c{m^3}.\)

D. \(45c{m^3}.\)

* Đáp án

* Hướng dẫn giải

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có điểm \(O\) và \(G\) lần lượt là tâm của mặt bên \(ABB'A'\) và trọng tâm của \(\Delta ABC.\) Biết \({V_{ABC.A'B'C'}} = 270c{m^3}.\) Thể tích của khối c (ảnh 1)

Ta có:

\(d\left( {O,\left( {ABC} \right)} \right) = \frac{1}{2}AA'\)

\({S_{\Delta AOB}} = \frac{1}{2}d\left( {G;AB} \right).AB\) mà \(d\left( {G;AB} \right) = \frac{1}{3}d\left( {C;AB} \right).\) Khi đó \({S_{\Delta AGB}} = \frac{1}{3}{S_{\Delta ABC}}\)

Vậy: \({V_{OAGB}} = \frac{1}{{18}}{V_{ABC.A'B'C'}} = \frac{1}{{18}}.270 = 15c{m^3}\) nên chọn đáp án C.

Copyright © 2021 HOCTAP247