Có bao nhiêu số tự nhiên gồm tám chữ số phân biệt sao cho tổng của tám chữ số này chia hết cho 9?

Câu hỏi :

Có bao nhiêu số tự nhiên gồm tám chữ số phân biệt sao cho tổng của tám chữ số này chia hết cho 9?

A.201600.

B.203400.

C.181440.

D. 176400

* Đáp án

C

* Hướng dẫn giải

Ta có \(0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9\) chia hết cho 9.

Do đó số gồm 8 chữ số phân biệt chia hết cho 9 thì số đó phải không chữ 2 trong 10 chữ số \(\left\{ {0;1;2;3;4;5;6;7;8;9} \right\}\) và có tổng chia hết cho 9.

Ta có 5 cặp số thỏa mãn: \(\left\{ {0;9} \right\};\left\{ {1;8} \right\};\left\{ {2;7} \right\};\left\{ {3;6} \right\};\left\{ {4;5} \right\}.\)

Gọi số có 8 chữ số là \(\overline {{a_1}{a_2}{a_3}{a_4}{a_5}{a_6}{a_7}{a_8}} \)

Trường hợp 1: Số được lập không chứa cặp số \(\left\{ {0;9} \right\}.\) Khi đó có 8! Số thỏa mãn.

Trường hợp 2: Số được lập không chứa một trong 4 cặp số \(\left\{ {1;8} \right\};\left\{ {2;7} \right\};\left\{ {3;6} \right\};\left\{ {4;5} \right\}.\)

Với mỗi số không chứa 1 trong 4 cặp trên, ta có 7.7! số được tạo ra thỏa mãn bài toán.

Do đó số các số gồm 8 chữ số phân biệt không chứa một trong 4 cặp số trên là: 7.7!.4

Vậy số các số gồm 8 chữ số phân biệt chia hết cho 8 là: \(8! + 7.7!.4 = 181440\) số.

Đáp án C.

Copyright © 2021 HOCTAP247