Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông và AB = BC = a,AA' = a căn 2 ,M là trung điểm của BC.

Câu hỏi :

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác vuông và \(AB = BC = a,AA' = a\sqrt 2 ,M\) là trung điểm của \(BC.\) Khoảng cách giữa hai đường thẳng \(AM\) và \(B'C\) bằng

A.\(d = \frac{{a\sqrt 7 }}{7}.\)

B.\(d = \frac{{a\sqrt 2 }}{2}.\)

C.\(d = \frac{{a\sqrt 3 }}{3}.\)

D. \(d = \frac{{a\sqrt 6 }}{6}.\)

* Đáp án

B

* Hướng dẫn giải

Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy là tam giác vuông và \(AB = BC = a,AA' = a\sqrt 2 ,M\) là trung điểm của \(BC.\) Khoảng cách giữa hai đường thẳng \(AM\) và \(B'C\) bằng (ảnh 1)

Gọi \(N\) là giao điểm của \(B'B.\) Ta có \(MN//B'C \Rightarrow \left( {AMN} \right)//B'C\)

Do đó \(d\left( {AM,B'C} \right) = d\left( {B'C,\left( {AMN} \right)} \right) = d\left( {B',\left( {AMN} \right)} \right) = d\left( {B,\left( {AMN} \right)} \right) = d\)

Xét tứ diện vuông \(B.AMN\) có \(\frac{1}{{{d^2}}} = \frac{1}{{B{A^2}}} + \frac{1}{{B{M^2}}} + \frac{1}{{B{N^2}}} = \frac{1}{{{a^2}}} + \frac{4}{{{a^2}}} + \frac{2}{{{a^2}}} = \frac{7}{{{a^2}}}.\)

Vậy \(d = \frac{{a\sqrt 7 }}{7}\)

Đáp án B.

Copyright © 2021 HOCTAP247