Cho hàm số bậc bốn y=f(x) có đồ thị hình vẽ bên. Số điểm cực trị của hàm số g(x)=f(x^3-3x) là

Câu hỏi :

Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị hình vẽ bên.

A.7.

B.9.

C.11.

D. 5.

* Đáp án

B

* Hướng dẫn giải

Ta có \(g'\left( x \right) = \left( {3{x^2} - 3} \right)f'\left( {{x^3} - 3x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = \pm 1\\f'\left( {{x^3} - 3x} \right) = 0\end{array} \right.\)

Dựa vào đồ thị ta có \(f'\left( {{x^3} - 3x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{x^3} - 3x = t\left( { - 2 >t} \right)\\{x^3} - 3x = u\left( { - 2 < u < 0} \right)\left( * \right)\\{x^3} - 3x = v\left( {0 < v < 2} \right)\end{array} \right.\)

Xét \(h\left( x \right) = {x^3} - 3x \Rightarrow h'\left( x \right) = 3{x^2} - 3 = 0 \Leftrightarrow x = \pm 1\) ta có bảng biến thiên sau:

Cho hàm số bậc bốn \(y = f\left( x \right)\) có đồ thị hình vẽ bên.Số điểm cực trị của hàm số \(g\left( x \right) = f\left( {{x^3} - 3x} \right)\) là (ảnh 2)

Dựa vào bảng biến thiên ta được (*) có 7 nghiệm phân biệt khác \( \pm 1\) nên \(g'\left( x \right) = 0\) có 9 nghiệm đơn phân biệt. Vậy hàm số \(g\left( x \right) = f\left( {{x^3} - 3x} \right)\) có 9 cực trị.

Đáp án B.

Copyright © 2021 HOCTAP247