Cho hàm số y=f(x) có đạo hàm f'(x)=(3-x)*(10-3x)^2*(x-2)^2với mọi x thuộc R. Hàm số g(x)=f(3-x)+1/6(x^2-1)^3

Câu hỏi :

Cho hàm số \(y = f\left( x \right)\) có đạo hàm f'(x)=(3x)(103x)2(x2)2 với mọi \(x \in \mathbb{R}.\) Hàm số \(g\left( x \right) = f\left( {3 - x} \right) + \frac{1}{6}{\left( {{x^2} - 1} \right)^3}\) đồng biến trên khoảng nào trong các khoảng sau?

A.\(\left( {1; + \infty } \right).\)

B.\(\left( {0;1} \right).\)

C.\(\left( { - \infty ;0} \right).\)

D. \(\left( { - \infty ; - \frac{1}{2}} \right).\)

* Đáp án

D

* Hướng dẫn giải

\(g'\left( x \right) = - f'\left( {3 - x} \right) + \frac{3}{6}2x{\left( {{x^2} - 1} \right)^2}\)

\( = - f'\left( {3 - x} \right) + x{\left( {{x^2} - 1} \right)^2}\)

\( = - \left[ {3 - \left( {3 - x} \right)} \right]{\left[ {10 - 3\left( {3 - x} \right)} \right]^2}{\left( {3 - x - 2} \right)^2} + x{\left( {{x^2} - 1} \right)^2}\)

\( = - x{\left( {1 + 3x} \right)^2}{\left( {1 - x} \right)^2} + x{\left( {x - 1} \right)^2}{\left( {x + 1} \right)^2}\)

\( = {\left( {x - 1} \right)^2}\left[ {{x^3} + 2{x^2} + x - x\left( {9{x^2} + 6x + 1} \right)} \right]\)

\( = {\left( {x - 1} \right)^2}\left( { - 8{x^3} - 4{x^2}} \right)\)

\( = - 4{x^2}{\left( {x - 1} \right)^2}\left( {2x + 1} \right)\)

\(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = \frac{{ - 1}}{2}\end{array} \right.\)

Cho hàm số \(y = f\left( x \right)\) có đạo hàm với mọi \(x \in \mathbb{R}.\) Hàm số \(g\left( x \right) = f\left( {3 - x} \right) + \frac{1}{6}{\left( {{x^2} - 1} \right)^3}\) đồng biến trên (ảnh 1)

Vậy hàm số đồng biến trên khoảng \(\left( { - \infty ; - \frac{1}{2}} \right).\)\( \Rightarrow g'\left( x \right) >0 \Leftrightarrow x \in \left( { - \infty ;\frac{{ - 1}}{2}} \right).\)

Đáp án D.

Copyright © 2021 HOCTAP247