Cho hình chóp S.ABC có SA vuông góc với mặt phẳng đáy, SA = 2a, tam giác ABC vuông cân tại C và AC = a căn 2 .

Câu hỏi :

Cho hình chóp \(S.ABC\) có \(SA\) vuông góc với mặt phẳng đáy, \(SA = 2a,\) tam giác \(ABC\) vuông cân tại \(C\) và \(AC = a\sqrt 2 .\) Góc giữa đường thẳng \(SB\) và mặt phẳng \(\left( {ABC} \right)\) bằng

A.\({120^0}.\)

B. \({30^0}.\)

C.\({45^0}.\)

D. \({60^0}.\)

* Đáp án

C

* Hướng dẫn giải

Cho hình chóp \(S.ABC\) có \(SA\) vuông góc với mặt phẳng đáy, \(SA = 2a,\) tam giác \(ABC\) vuông cân tại \(C\) và \(AC = a\sqrt 2 .\) Góc giữa đường thẳng \(SB\) và mặt phẳng \(\left( {ABC} (ảnh 1)

Ta có

\(AB = AC\sqrt 2 = 2a.\)

Lại có \(AB\) là hình chiếu vuông góc của \(SB\) trên mặt phẳng \(\left( {ABC} \right).\)

Suy ra \(\left( {SB,\left( {ABC} \right)} \right) = \left( {SB,AB} \right) = SBA\)

Do đó \[\tan SBA = \frac{{SA}}{{AB}} = \frac{{2a}}{{2a}} = 1.\]

Vậy góc giữa đường thẳng \(SB\) và mặt phẳng \(\left( {ABC} \right)\) bằng \({45^0}.\)

Đáp án C.

Copyright © 2021 HOCTAP247