Hàm số nào sau đây đồng biến trên R

Câu hỏi :

Hàm số nào sau đây đồng biến trên \(\mathbb{R}?\)

A.\(y = \frac{{3x - 1}}{{x + 1}}\)

B.\(y = x + \frac{1}{x}\)

C.\(y = {x^3} - {x^2} + x - 1\)

D.\(y = {x^3} - 3x\)

* Đáp án

C

* Hướng dẫn giải

Hàm số \(y = \frac{{3x - 1}}{{x + 1}}\) có tập xác định \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\) nên không thể đồng biến trên \(\mathbb{R}.\)

Hàm số \(y = x + \frac{1}{x}\) có tập xác định \(D = \mathbb{R}\backslash \left\{ 0 \right\}\) nên không thể đồng biến trên \(\mathbb{R}.\)

Hàm số \(y = {x^3} - {x^2} + x - 1\) có \(y' = 3{x^2} - 2x + 1 = 3\left( {{x^2} - 2.\frac{1}{3}.x + \frac{1}{9}} \right) + \frac{2}{3} = 3{\left( {x - \frac{1}{3}} \right)^2} + \frac{2}{3} >0\) với mọi Hàm số nào sau đây đồng biến trên \(\mathbb{R}?\) (ảnh 1)Vậy hàm số \(y = {x^3} - {x^2} + x - 1\) đồng biến trên \(\mathbb{R}.\)

Hàm số \(y = {x^3} - 3x\) có \(y' = 3{x^2} - 3 \Rightarrow y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 1\end{array} \right..\)

Bảng biến thiên

Hàm số nào sau đây đồng biến trên \(\mathbb{R}?\) (ảnh 2)

Suy ra, hàm số đồng biến trên \(\left( { - \infty ; - 1} \right)\) và \(\left( {1; + \infty } \right).\)

Đáp án C.

Copyright © 2021 HOCTAP247