Cho hàm số y=1/3x^3-1/2(m+3)x^2+m^2x+1 Có bao nhiêu số thực m để hàm số đạt cực trị tại x = 1?

Câu hỏi :

Cho hàm số \(y = \frac{1}{3}{x^3} - \frac{1}{2}\left( {m + 3} \right){x^2} + {m^2}x + 1.\) Có bao nhiêu số thực \(m\) để hàm số đạt cực trị tại \(x = 1?\)

A.0

B.3

C.2

D.1

* Đáp án

D

* Hướng dẫn giải

Ta có \(y' = {x^2} - \left( {m + 3} \right)x + {m^2}.\)

Hàm số đạt cực trị tại \(x = 1\) nên y'(1)=012(m+3).1+m2=0[m=2m=1.

Kiểm tra

Với \(m = 2\) ta có \(y' = {x^2} - 5x + 4.\)

Cho \(y' = 0 \Leftrightarrow {x^2} - 5x + 4 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 4\end{array} \right..\)

Do \(x = 1\) là nghiệm đơn của phương trình \(y' = 0\) nên \(x = 1\) là cực trị của hàm số. Do đó \(m = 2\) thỏa mãn.

Với \(m = - 1\) ta có \(y' = {x^2} - 2x + 1.\)

Cho \(y' = 0 \Leftrightarrow {x^2} - 2x + 1 = 0 \Leftrightarrow x = 1.\)

Do \(x = 1\) là nghiệm kép của phương trình \(y' = 0\) nên \(x = 1\) không là cực trị của hàm số. Do đó \(m = - 1\) không thỏa mãn.

Vậy có 1 số thực \(m\) để hàm số đạt cực trị tại \(x = 1.\)

Đáp án D.

Copyright © 2021 HOCTAP247