Cho tứ giác ABCD biết số đo của 4 góc của tứ giác lập thành cấp số cộng và có 1 góc có số đo bằng 30^0 góc có số đo lớn nhất

Câu hỏi :

Cho tứ giác \(ABCD\) biết số đo của 4 góc của tứ giác lập thành cấp số cộng và có 1 góc có số đo bằng \({30^0},\) góc có số đo lớn nhất trong 4 góc của tứ giác này là:

A.\({150^0}\)

B.\({120^0}\)

C.\({135^0}\)

D. \({160^0}\)

* Đáp án

A

* Hướng dẫn giải

Giả sử \({0^0} < A < B < C < D < {180^0}\) và \(A,B,C,D\) lập thành 1 cấp số cộng, giả sử công sai \(d >0\left( * \right)\)</>

Khi đó: \(B = A + d,c = A + 2d,D = A + 3d\)

Nên A=300

\( \Rightarrow {S_4} = A + B + C + D = {30^0} + {30^0} + d + {30^0} + 2d + {30^0} + 3d = {120^0} + 6d = {360^0}\)

\( \Leftrightarrow f = {40^0} \Rightarrow D = {30^0} + {3.40^0} = {150^0} < {180^0}\) (thỏa mãn)

Nếu \(B = {30^0} \Rightarrow {S_4} = A + B + C + D = {30^0} - d + {30^0} + {30^0} + d + {30^0} + 2d = {360^0}\)

\( \Leftrightarrow {120^0} + 2d = {360^0} \Leftrightarrow d = {120^0}\)

\( \Rightarrow D = {30^0} + 2d = {30^0} + {2.120^0} = {270^0}\) (không thỏa mãn)

Nếu \(C = {30^0} \Rightarrow {S_4} = A + B + C + D = {30^0} - 2d + {30^0} - d + {30^0} + {30^0} + d = {360^0}\)

\( \Leftrightarrow {120^0} - 2d = {360^0} \Leftrightarrow d = - {120^0}\) (không thỏa mãn)

Nếu \(D = {30^0} \Rightarrow {S_4} = A + B + C + D = {30^0} - 3d + {30^0} - 2d + {30^0} - d + {30^0} = {360^0}\)

\( \Leftrightarrow {120^0} - 6d = {360^0} \Leftrightarrow d = - {40^0}\) (không thỏa mãn).

Vậy góc lớn nhất của tứ giác là \({150^0}.\)

Đáp án A.

Copyright © 2021 HOCTAP247