Cho hình chóp tứ giác đều S.ABCD có SA = AB = a. Góc giữa SA và CD là

Câu hỏi :

Cho hình chóp tứ giác đều \(S.ABCD\) có \(SA = AB = a.\) Góc giữa \(SA\) và \(CD\) là

A.\({60^0}.\)

B.\({45^0}.\)

C.\({30^0}.\)

D. \({90^0}.\)

* Đáp án

* Hướng dẫn giải

Cho hình chóp tứ giác đều S.ABCD có SA = AB = a. Góc giữa SA và CD là (ảnh 1)

Vì \(AB//CD\) nên \(\left( {\widehat {SA;CD}} \right) = \left( {\widehat {SA;AB}} \right)\) mà \(S.ABCD\) là chóp tứ giác đều và \(SA = AB = a\) nên \(\Delta SAB\) đều. Vậy \(\widehat {\left( {SA;AB} \right)} = {60^0},\) khi đó góc giữa \(SA\) và \(CD\) là \({60^0}\) nên chọn đáp án A.

Copyright © 2021 HOCTAP247