Đồ thị hàm số y=(x^2-3x+2)/(x^3-x) có mấy đường tiệm cận?

Câu hỏi :

Đồ thị hàm số \(y = \frac{{{x^2} - 3x + 2}}{{{x^3} - x}}\) có mấy đường tiệm cận?

A.5.

B.3.

C.2.

D.4.

* Đáp án

B

* Hướng dẫn giải

Xét \(\mathop {\lim }\limits_{x \to \pm \infty } \frac{{{x^2} - 3x + 2}}{{{x^3} - x}} = \mathop {\lim }\limits_{x \to \pm \infty } \frac{1}{x}\left( {\frac{{1 - \frac{3}{x} + \frac{2}{{{x^2}}}}}{{1 - \frac{1}{{{x^2}}}}}} \right) = 0\)

Nên đường \(y = 0\) là tiệm cận ngang của đồ thị hàm số.

Xét \({x^3} - x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm 1\end{array} \right..\)

Ta có: \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} - 3x + 2}}{{{x^3} - x}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {x - 2} \right)}}{{x\left( {{x^2} - 1} \right)}} = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 2} \right)}}{{x\left( {x + 1} \right)}} = - \frac{1}{2}\). Nên đường \(x = 1\) không là đường tiệm cận đứng.

Nên đường \(x = 1\) không là đường tiệm cận đứng.

\(\mathop {\lim }\limits_{x \to {0^ + }} \frac{{{x^2} - 3x + 2}}{{{x^3} - x}} = - \infty ;\mathop {\lim }\limits_{x \to {0^ - }} \frac{{{x^2} - 3x + 2}}{{{x^3} - x}} = + \infty ;\mathop {\lim }\limits_{x \to - {1^ + }} \frac{{{x^2} - 3x + 2}}{{{x^3} - x}} = - \infty ;\mathop {\lim }\limits_{x \to - {1^ - }} \frac{{{x^2} - 3x + 2}}{{{x^3} - x}} = + \infty \)

Nên đồ thị hàm số có các đường tiệm cận đứng là: \(x = - 1;x = 0\)

Vậy đồ thị hàm số có 3 đường tiệm cận.

Đáp án B.

Copyright © 2021 HOCTAP247