A.\(a\sqrt {\frac{{15}}{{17}}} \)
B.\(a\sqrt {\frac{{15}}{{62}}} \)
C.\(a\sqrt {\frac{{30}}{{31}}} \)
D. \(a\sqrt {\frac{{15}}{{68}}} \)
C
Gọi \(O\) là tâm của đáy \(ABCD\) ta có \(SO \bot \left( {ABCD} \right)\)
Gọi \(I\) là trung điểm của OA
\( \Rightarrow MI//SO \Rightarrow MI \bot \left( {ABCD} \right) \Rightarrow \left( {MN,\left( {ABCD} \right)} \right) = \angle \left( {MN,\left( {ABCD} \right)} \right) = \angle MNI = {60^0}\)
Xét \(\Delta NCI\) có \(CN = \frac{1}{2}BC = \frac{a}{2};CI = \frac{3}{4}AC = \frac{{3\sqrt 2 }}{4}a;\angle NCI = {45^0}\)
Suy ra \(NI = \sqrt {C{N^2} + C{I^2} - 2CN.CI.\cos C} = \sqrt {\frac{{{a^2}}}{4} + \frac{{18{a^2}}}{{16}} - 2.\frac{a}{2}.\frac{{3\sqrt 2 }}{4}.a.\cos {{45}^0}} = a\frac{{\sqrt {10} }}{4}.\)
\(MI = NI.\tan {60^0} = a\frac{{\sqrt {30} }}{4} \Rightarrow SO = a\frac{{\sqrt {30} }}{2}.\)
Vì \(\left\{ \begin{array}{l}BC//\left( {SAD} \right)\\DM \subset \left( {SAD} \right)\end{array} \right. \Rightarrow d\left( {BC,DM} \right) = d\left( {BC,\left( {SAD} \right)} \right) = 2d\left( {O,\left( {SAD} \right)} \right) = 2h.\)
Xét tứ diện \(\left( {SAOD} \right)\) có \(SO;OA;OD\) đôi một vuông góc
Nên ta có: \(\frac{1}{{{h^2}}} = \frac{1}{{S{O^2}}} + \frac{1}{{O{A^2}}} + \frac{1}{{O{D^2}}} = \frac{2}{{15{a^2}}} + \frac{2}{{{a^2}}} + \frac{2}{{{a^2}}} = \frac{{62}}{{15{a^2}}} \Rightarrow h = a\sqrt {\frac{{15}}{{62}}} \)
Do đó \(d\left( {BC,DM} \right) = 2h = 2a\sqrt {\frac{{15}}{{62}}} = a\sqrt {\frac{{30}}{{31}}} \)
Đáp án C.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247