Cho biết đồ thị hàm số y=x^4-2mx^2-2m^2+m^4 có 3 điểm cực trị A,B,C cùng với điểm D(0;-3) là 4 đỉnh của một hình thoi.

Câu hỏi :

Cho biết đồ thị hàm số \(y = {x^4} - 2m{x^2} - 2{m^2} + {m^4}\) có 3 điểm cực trị \(A,B,C\) cùng với điểm \(D\left( {0; - 3} \right)\) là 4 đỉnh của một hình thoi. Gọi \(S\) là tổng các giá trị \(m\) thỏa mãn đề bài thì \(S\) thuộc khoảng nào sau đây

A.\(S \in \left( {2;4} \right)\)

B.\(S \in \left( {\frac{9}{2};6} \right)\)

C.\(S \in \left( {1;\frac{5}{2}} \right)\)

D. \(S = \left( {0;\frac{5}{2}} \right)\)

* Đáp án

A

* Hướng dẫn giải

Ta có: \(y = {x^4} - 2m{x^2} - 2{m^2} + {m^4}\) có 3 điểm cực trị A, B, C.

\(y' = 4{x^3} - 4m = 4x\left( {{x^2} - m} \right)\) có 3 nghiệm phân biệt \( \Rightarrow m >0\)

Không làm mất tính tổng quát giả sử:

\(A\left( {0;{m^4} - 2{m^2}} \right);B\left( {\sqrt m ;{m^4} - 3{m^2}} \right);C\left( { - \sqrt m ;{m^4} - 3{m^2}} \right);\)

Gọi \(I = AD \cap BC\left( {A,D \in Oy} \right)\)

\(I\) là trung điểm của \(BC \Rightarrow I\left( {0;{m^4} - 3{m^2}} \right)\)

\(I\) là trung điểm của \(AD \Rightarrow I\left( {0;\frac{{{m^4} - 2{m^2} - 3}}{2}} \right)\)

Đồng nhất ta có: \(\frac{{{m^4} - 2{m^2} - 3}}{2} = {m^4} - 3{m^2} \Leftrightarrow {m^4} - 4{m^2} + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}m = \pm 1\\m = \pm \sqrt 3 \end{array} \right.\)

Kết hợp với đk ta có \(m = 1,m = \sqrt 3 \Rightarrow S = 1 + \sqrt 3 \)

Vậy \(S \in \left( {2;4} \right).\)

Đáp án A.

Copyright © 2021 HOCTAP247