A.12
B.10
C.11
D. 18
A
Ta có: \(f'\left( x \right) = \frac{{x - 1}}{{\sqrt {{{\left( {x - 1} \right)}^2} + 2} }} - \frac{1}{2},h'\left( x \right) = 3\cos x.f'\left( {3\sin x} \right).\)
Phương trình: \(h'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}\cos x = 0{\rm{ }}\left( 1 \right)\\f'\left( {3\sin x} \right) = 0{\rm{ }}\left( 2 \right)\end{array} \right.\)
\(\left( 1 \right) \Leftrightarrow \cos x = 0 \Leftrightarrow x = \frac{\pi }{2} + k\pi \left( {k \in \mathbb{Z}} \right).\)
Với \(x \in \left[ {\frac{\pi }{6};6\pi } \right],\) suy ra \( \Leftrightarrow \left\{ \begin{array}{l}k \in \mathbb{Z}\\\frac{\pi }{6} \le \frac{\pi }{2} + k\pi \le 6\pi \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k \in \mathbb{Z}\\ - \frac{1}{3} \le k \le \frac{{11}}{2}\end{array} \right. \Leftrightarrow k \in \left\{ {0;1;2;3;4;5} \right\}.\)
Trên đoạn \(\left[ {\frac{\pi }{6};6\pi } \right]\) phương trình \(\left( 1 \right)\) có 6 nghiệm.
\(\left( 2 \right) \Leftrightarrow f'\left( {3\sin x} \right) = 0 \Leftrightarrow \frac{{3\sin x - 1}}{{\sqrt {{{\left( {3\sin x - 1} \right)}^2} + 2} }} - \frac{1}{2} = 0 \Leftrightarrow 2\left( {3\sin x - 1} \right) = \sqrt {{{\left( {3\sin x - 1} \right)}^2} + 2} \)
\( \Leftrightarrow \left\{ \begin{array}{l}\sin x >\frac{1}{3}\\4{\left( {3\sin x - 1} \right)^2} = {\left( {3\sin x - 1} \right)^2} + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\sin x >\frac{1}{3}\\{\left( {3\sin x - 1} \right)^2} = \frac{2}{3}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}\sin x >\frac{1}{3}\\\sin x = \frac{{3 \pm \sqrt 6 }}{9}\end{array} \right. \Rightarrow \sin x = \frac{{3 + \sqrt 6 }}{9}\left( { \approx 0.605} \right)\)
Mặt khác: \(\sin x = \frac{{3 + \sqrt 6 }}{9} >\frac{1}{2} = \sin \frac{\pi }{6}\) nên:
+) Trên \(\left[ {\frac{\pi }{6};6\pi } \right]\) thì phương trình \(\sin x = \frac{{3 + \sqrt 6 }}{9}\) cho hai nghiệm.
+) Trên mỗi chu kỳ \(2\pi \) thì phương trình \(\sin x = \frac{{3 + \sqrt 6 }}{9}\) cũng cho hai nghiệm.
Suy ra trên \(\left[ {\frac{\pi }{6};6\pi } \right]\) thì phương trình (2) cho 6 nghiệm.
Vậy trên \(\left[ {\frac{\pi }{6};6\pi } \right]\) thì phương trình \(h'\left( x \right) = 0\) cho 12 nghiệm.
Đáp án A.
Câu hỏi trên thuộc đề trắc nghiệm dưới đây !
Copyright © 2021 HOCTAP247