Cho hàm số f(x). Hàm số y=f'(x) có đồ thị như hình bên dưới. Hàm số g(x)=f(3x-4)-8x^2+12x+2020 nghịch biến

Câu hỏi :

Cho hàm số \(f\left( x \right).\) Hàm số \(y = f'\left( x \right)\) có đồ thị như hình bên dưới.

A.\(\left( { - \frac{1}{4};\frac{3}{4}} \right)\)

B.\(\left( {\frac{{ - 1}}{4};\frac{1}{4}} \right)\)

C.\(\left( {\frac{5}{4}; + \infty } \right)\)

D. \(\left( {\frac{1}{4};\frac{5}{4}} \right)\)

* Đáp án

D

* Hướng dẫn giải

Ta có: \(g'\left( x \right) = - 4f'\left( {3 - 4x} \right) - 16x + 12 = - 4\left[ {f'\left( {3 - 4x} \right) + 4x - 3} \right]\)

\(g'\left( x \right) < 0 \Leftrightarrow f'\left( {3 - 4x} \right) + 4x - 3 >0 \Leftrightarrow f'\left( {3 - 4x} \right) >3 - 4x\left( * \right)\)</>

Đặt \(t = 3 - 4x\) ta có \(\left( * \right)\) trở thành: \(f'\left( t \right) >t.\)

Cho hàm số \(f\left( x \right).\) Hàm số \(y = f'\left( x \right)\) có đồ thị như hình bên dưới.Hàm số \(g\left( x \right) = f\left( {3 - 4x} \right) - 8{x^2} + 12x + 2020\) nghịch biến trên  (ảnh 2)

Từ đồ thị trên ta có: \(f'\left( t \right) >t \Leftrightarrow \left[ \begin{array}{l} - 2 < t < 2\\t >4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l} - 2 < 3 - 4x < 2\\3 - 4x >4\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\frac{1}{4} < x < \frac{5}{4}\\x < - \frac{1}{4}\end{array} \right..\)

Vậy hàm số \(g\left( x \right)\) nghịch biến trên khoảng \(\left( {\frac{1}{4};\frac{5}{4}} \right).\)

Đáp án D.

Copyright © 2021 HOCTAP247