Có bao nhiêu điểm M thuộc đồ thị hàm số y=(x+2)/(x-1) sao cho khoảng cách từ M đến trục tung bằng hai lần khoảng cách từ

Câu hỏi :

Có bao nhiêu điểm \(M\) thuộc đồ thị hàm số \(y = \frac{{x + 2}}{{x - 1}}\) sao cho khoảng cách từ \(M\) đến trục tung bằng hai lần khoảng cách từ \(M\) đến trục hoành?

A.0.

B.2.

C.1.

D. 3.

* Đáp án

* Hướng dẫn giải

Gọi \(M\left( {x;\frac{{x + 2}}{{x - 1}}} \right),\) với \(x \ne 1.\)

Ta có \(\left\{ \begin{array}{l}d\left( {M;Oy} \right) = \left| x \right|\\d\left( {M;Ox} \right) = \left| {\frac{{x + 2}}{{x - 1}}} \right|\end{array} \right..\)

Theo giả thiết \(d\left( {M;Oy} \right) = 2d\left( {M;Ox} \right) \Leftrightarrow \left| x \right| = 2\left| {\frac{{x + 2}}{{x - 1}}} \right|.\)

TH1: \(x = 2.\frac{{x + 2}}{{x - 1}} \Rightarrow {x^2} - x = 2x + 4 \Leftrightarrow {x^2} - 3x - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 1\\x = 4\end{array} \right.\) (thỏa mãn).

Do đó \(M\left( { - 1; - \frac{1}{2}} \right)\) hoặc \(M\left( {4;2} \right).\)

TH2: \( - x = 2.\frac{{x + 2}}{{x - 1}} \Rightarrow - {x^2} + x = 2x + 4 \Leftrightarrow {x^2} + x + 4 = 0\) (vô nghiệm).

Vậy có 2 điểm M thỏa mãn yêu cầu bài toán nên chọn đáp án B.

Copyright © 2021 HOCTAP247