Cho lăng trụ ABC.A'B'C' có đáy là tam giác đều cạnh cạnh bên bằng 4a và tạo với đáy một góc 30^0. Thể tích

Câu hỏi :

Cho lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều cạnh a, cạnh bên bằng \(4a\) và tạo với đáy một góc \({30^0}.\) Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng

A.\(\frac{1}{2}{a^3}.\)

B.\(\frac{3}{2}{a^3}.\)

C.\(\sqrt 3 {a^3}.\)

D. \(\frac{{\sqrt 3 }}{2}{a^3}.\)

* Đáp án

* Hướng dẫn giải

Cho lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều cạnh cạnh bên bằng \(4a\) và tạo với đáy một góc \({30^0}.\) Thể tích khối lăng trụ \(ABC.A'B'C'\) bằng (ảnh 1)

Tam giác \(A'B'C'\) là tam giác đều cạnh \(a\) nên \({S_{\Delta A'B'C'}} = \frac{{{a^2}\sqrt 3 }}{4}.\)

Gọi \(H\) là hình chiếu vuông góc của \(A\) trên \(\left( {A'B'C'} \right).\)

Ta có góc giữa \(AA'\) và \(\left( {A'B'C'} \right)\) là \(\widehat {AA'H} = {30^0},\) suy ra \[AH = AA'.\sin {30^0} = 2a.\]

Thể tích khối lăng trụ \(ABC.A'B'C'\) là \(V = AH.{S_{A'B'C'}} = 2a.\frac{{{a^2}\sqrt 3 }}{4} = \frac{{\sqrt 3 {a^3}}}{2}\) nên chọn đáp án D.

Copyright © 2021 HOCTAP247